Optimal Sampling Lattices and Trivariate Box Splines
نویسنده
چکیده
The Body Centered Cubic (BCe) and Face Centered Cubic (FCC) lattices along with a set of box splines for sampling and reconstruction of trivariate functions are proposed. The BCC lattice is demonstrated to be the optimal choice of a pattern for generic sampling purposes. While the FCC lattice is the second best choice for this purpose, both FCC and BCC lattices significantly outperform the accuracy of the commonly-used Cartesian 3-D lattice. A set of box splines tailored to the geometry of the BCC and FCC lattices are proposed for approximation of trivariate functions on these lattices. Furthermore, for efficient evaluation, the explicit piecewise polynomial representation of the proposed box splines on the BCC lattice are derived. This derivation can be generalized for other box splines to provide efficient evaluation of box splines at arbitrary points. Despite the common assumption on the superior computational performance of tensorproduct reconstruction, it is demonstrated that these non-separable box spline-based reconstructions on the BCC and FCC lattices outperform their tensor-product counterparts on the Cartesian lattice. In particular, the box spline-based reconstruction on the BCC lattice is shown to be twice as efficient as the corresponding tensor-product B-spline solution on the Cartesian lattice. Hence, we establish the fact that not only are these non-Cartesian lattices attractive from the sampling-theory aspects, they also allow for efficient and superior reconstruction algorithms.
منابع مشابه
Uniform Sampling and Reconstruction of Trivariate Functions
The Body Centered Cubic (BCC) and Face Centered Cubic (FCC) lattices have been known to outperform the commonly-used Cartesian sampling lattice due to their improved spectral sphere packing properties. However, the Cartesian lattice has been widely used for sampling of trivariate functions with applications in areas such as biomedical imaging, scientific data visualization and computer graphics...
متن کاملSymmetric box-splines on root lattices
Root lattices are efficient sampling lattices for reconstructing isotropic signals in arbitrary dimensions, due to their highly symmetric structure. One root lattice, the Cartesian grid, is almost exclusively used since it matches the coordinate grid; but it is less efficient than other root lattices. Box-splines, on the other hand, generalize tensor-product B-splines by allowing non-Cartesian ...
متن کاملBlending Basic Implicit Shapes Using Trivariate Box Splines
To blend be~ween simple implicit surfaces, such as the sphere, the cone, the cylinder and the torus, we propose La locally employ the zero set of a serendipitous trivariate box spline. This box spline is defined by seven directions that form a regular partition of space into tetrahedra. The resulting blend surface is curvature continuous. An approxlmateparametrization of the piecewise implicit ...
متن کاملOn the Number of Tight Wavelet Frame Generators associated with Multivariate Box Splines
We study the number of Laurent polynomials in a sum of square magnitudesof a nonnegative Laurent polynomial associated with bivariate box splines on the three-and the four-direction meshes. In addition, we study the same problem associated withtrivariate box splines. The number of Laurent polynomials in a sum of squares magnitudeof a nonnegative Laurent polynomial determines the...
متن کاملEfficient volume rendering on the body centered cubic lattice using box splines
We demonstrate that non-separable box splines deployed on body centered cubic lattices (BCC) are suitable for fast evaluation on present graphics hardware. Therefore, we develop the linear and quintic box splines using a piecewise polynomial (pp)-form as opposed to their currently known basis (B)-form. The pp-form lends itself to efficient evaluation methods such as de Boor’s algorithm for spli...
متن کامل